

ENERGY PHOTOVOLTAICS, INC.

EPV Reliability Update

Kai Wm. Jansen

Energy Photovoltaics, Inc. Princeton, NJ

June 24, 2004

Acknowledgments: Hermann Volltrauer, Dave Jackson, Barry Johnson, Leon Chen, Alan Delahoy, and the EPV Mfg. team
This work was partially funded by PV Manufacturing R&D contract # ZDO-2-30628-14 and TFPPP CIGS contract #RDJ-2-30630-21

Overview

- New Production Facilities and Test Sites
- Status of Reliability Projects for the EPV-40 module

Current Project Areas:

- Breakage
- Corrosion
- Long Term Power Output
- Status of Reliability Projects for the Next Generation of EPV Modules
 - Flexible Backsheet Modules
 - CIGS Modules

The EPV-40 Module

Rating: 40 watts (stable)

Dimensions: 25 inches x 49 inches

(63.5 cm x 124.5 cm)

Weight: 27 pounds (12.3 kg)

Mounting: a frameless module that

can accommodate a variety of mounting

systems

Encapsulation: glass-EVA-glass

Technology: a-Si/a-Si tandem

New Production Facilities and Test Sites

Tianjin, China

- 2.5 MW/yr
- On-line and operational

Heliodomi – Kilkis, Greece

- 5 MW/yr
- Equipment shipments underway

MVV – Moehlstrasse Project

- >100kW grid tied array
- Prototype/test project to develop expertise in EPV systems for multiple future applications
- Installation is underway

Reliability Projects: Breakage Testing Update

Simply Supported Beam Test Structure

Glass Strength: compression = ~30,000 psi

tension = ~5000 psi (limited by defects)

load for 8" test samples is ~11 lbs

Reliability Projects: Breakage Testing Update

Previous Results from Simply Supported Beam Tests

Effect of Glass Seaming on Breakage Strength

Reliability Projects: Breakage Testing Update

Updated Results from Simply Supported Beam Tests

Effect of Glass Seaming on Breakage Strength

Reliability Projects: Corrosion Testing Update

- Catastrophic corrosion failures continue to be an uncommon occurrence in EPV a-Si modules
 - Wide edge-delete region (~10 mm)
 - Effective glass-EVA-glass encapsulation
 - Frameless design for most applications
- One report of old modules showed evidence of TCO crazing on edges, but performance was found to be unaffected

- The TCO for these modules was manufactured during the time when TCO delamination was a problem
- As long as the encapsulation remains intact, the performance should remain unaffected, since moisture is necessary for the delamination reactions to proceed.

Reliability Projects: Corrosion Testing Update

- All TCO tested in the last year has been acceptable with no delamination.
 - The adhesion problem has been effectively corrected by the glass company and we continue to monitor all incoming materials.
- Standard EPV-40 modules have successfully completed damp heat, thermal cycling, humidity freeze and other IEC 61646 tests
- Hot and humid climate study modules completed initial testing at NREL and will be deployed at FSEC shortly.
- We are collaborating with FSEC on encapsulation testing, TCO delamination, and effects of bias voltage using glass-EVA-glass and other encapsulation systems

DC POWER SUPPLY +

INDIUM CONTACT PAD

TCO test structure

Reliability Projects: Long-Term Power Output / Stability

- Performance improvements achieved under PVMaT contract have improved performance by 15-20%
 - ZnO/Al back reflector
 - Process improvements
 - New module design to optimize active area
- Long term testing is on-going at several test sites
 - In-house
 - Laboratories (NREL, Sandia, etc.)
 - Customer sites (MVV, Heliodomi, 4 Times Square, etc.)
 - Long-term performance continues to be predictable with seasonal variations

Next Generation EPV Modules

Flexible Back Sheet Encapsulation

Advantages:

- modules are about half the weight of glass-EVA-glass modules
- less labor to manufacture no back glass fabrication
- safer and easier processing for operators glass handling is reduced and flexible back sheets are light and easy to handle
- module is more resistant to breakage (when tempered glass is used)

Next Generation EPV Modules

Disadvantages

- Cost is higher
 - currently, back sheet material costs more than glass, but this is partially offset by labor cost savings
- TCO glass must be heat strengthened or tempered
 - Single sheet of 3 mm annealed glass will not pass load tests
 - Heat strengthening/tempering is an added cost for most applications
- Cannot produce submodules
 - If heat strengthened or tempered glass is cut, glass strength is compromised and/or glass shatters (depending upon stress in glass)
 - Reduces production line flexibility
- Mounting systems need to be redesigned
 - Frames/mounting systems must be modified for a thinner module
 - Pottants/adhesives need to be compatible with back sheet
- Outdoor testing is underway for 2 back sheet candidates
 - PEN/Al/PET bonded to EVA
 - PVF/AI/PET bonded to EVA
 - ✓ Both are performing well thus far

Next Generation EPV Modules

CIGS Module Reliability / Stability

- Initial outdoor testing of CIGS modules are encouraging
- Two 6"x17" submodules cut from full sized plates (17"x38") demonstrate stable performance over the first 48 days deployed outdoors

Future Directions

- ☐ Continue making reliability improvements on EPV-40
 - Expand failure analysis and environmental testing at NJ facility
 - utilize additional resources at NREL, Sandia, FSEC, ASU-PTL, factory sites (China and Greece), and customer sites (Germany, California, New York City, etc.)
 - Incorporate performance improvements into NJ facility modules
 - Including high performance ZnO/Al back reflector and other enhancements developed under our PV Manufacturing R&D contract
 - Re-certify EPV-40 under IEC/IEEE/UL as necessary
 - Develop low-cost mounting systems for improved module reliability
- □ Develop a prototype low-cost/highly reliable flexible back sheet module and evaluate cost effectiveness
- □ Continue long term outdoor testing and development of high performance CIGS modules